

A Single-Sign-On Security Platform for Private
 and Decentralized Applications

William Swanson, Paul Puey

The Edge platform (formerly Airbitz) implements a client-side encrypted, peer-to-peer synchronized, and
backed up data store with a clean, easy to use account-style interface.

The Edge platform provides a fully client-side account that creates, manages, and encrypts private keys, public
keys, and application data on the user’s client device and uses server side assistance for backup and
synchronization of encrypted data and for authenticating users. Edge platform users retain full control of their
private keys at all times with neither Edge nor third parties having access to private keys or transaction data. The
platform has optional blockchain “plugins” that provide functionality to transact on various blockchains such as
Bitcoin, Litecoin, Bitcoin Cash, Ethereum, and ERC20 Ethereum tokens.

Data security and backup is implemented in a cross platform Javascript library which is compatible with
NodeJS, browsers, and React Native. From our previous company’s name, this is referred to as the Edge Core.
Edge Core implements all account and wallet creation, user authentication, management of transaction data,
encryption, and synchronization across devices.

The Edge Core architecture is inherently “client-strong” meaning nearly all logic exists and operates on the
client device. Servers exists only to assist in authentication, for encrypted backups, and as nodes on the
blockchain network. Edge Core leaves control of the private keys entirely in the hands of the user or application
which controls the login and password of the account. Edge servers have no capability of spending funds on
users’ behalf.

Client-Server Architecture
Edge Core utilizes a “95% decentralized” client-server architecture which utilizes 3 separate types of servers.

1. The first is a conventional app server developed in Python/Django with a PostgreSQL database.
Although this is auto-replicated and backed up, this is still a centralized server. It is utilized for creating
new accounts and authenticating existing accounts. In Edge Core, it is referred to as the ‘auth server’.
This server incorporates automatic dual server replication and encrypted hourly backups to an offsite
server. Unavailability of the auth-server still allows Edge SDK apps to function for blockchain
transactions and synchronization between devices which have accounts that were previously logged in.

2. Edge Core utilizes a semi-decentralized, peer-to-peer network of data-sync backup servers running the
Git protocol and software. Referred to as ‘sync-servers’, this pool of Git servers only hosts data that is
pre-encrypted by the client devices running Edge Core. These are true peer-to-peer servers in that there
are no primary or secondary servers, however all sync-servers and the auth-server are operated by Edge.
A client can connect to any of the sync servers to upload or download data. Any new or modified data
sent to a sync-server is automatically replicated to other sync-servers, utilizing the Git protocol to
resolve conflicts and provide modification history and rollback if needed. To scale this architecture,
“pools” of sync-servers will be created in the future such that each pool will replicate data across the
sync-servers in the pool, but not across other pools. If all sync-servers were unavailable, Edge SDK apps
can still function to transact funds directly from public blockchain nodes.

3. Edge Core relies on public blockchain full nodes running Electrum for doing transaction detection and
broadcast for a majority of supported cryptocurrencies. These servers are publicly accessible nodes
hosted by Edge and other community members. In this way, apps utilizing Edge can seamlessly send
and receive funds even if all of the Edge server infrastructure were to be unavailable, a feature no other
platform can provide.

Data Model
The Edge data model contains two types of data:

● Login data
● Synced data

The login data allows the user to gain access to their account data. It consists of encrypted keys to the account,
as well as the hashed credentials, such as usernames and passwords, needed to access those keys. The Edge auth
server maintains a copy of the login data and provides it to authenticated users upon request (subject to
rate-limiting, 2-factor authentication, and other safeguards). Once users gain access to their login data, they can
decrypt the keys to their account data:

The account and wallet data are both located on the Edge sync servers, which are general-purpose data stores.
The account store typically holds user settings, a list of wallets, and the private keys for those wallets. The
wallet store typically holds transaction and address metadata. Applications using the Edge SDK can write any
data they like to these data stores. Accessing either type of data store requires two keys:

● syncKey - 160-bit shared secret used to authenticate with the sync server
● dataKey - 256-bit AES-CBC encryption key for the data store contents

The dataKey is never revealed to the sync server, so Edge cannot read the contents of the synced data.

Login
Since the login data controls access to the account data, “Logging in” is defined as obtaining the 256-bit
loginKey that decrypts the login data. There are several ways to retrieve this key:

● Username and password
● Username and PIN
● Username and recovery answers
● Thumbprint to unlock the phone’s secure storage

By combining this loginKey with a copy of the login data, the user can gain access to their synced data (where
the actual value is stored). As long as they lead to the loginKey, all methods are equivalent. This flexible
architecture allows Edge to introduce new zero-knowledge login methods as new use cases arise.

Password Login
To perform a password login, the client first needs a copy of the login data. If the client has a copy of the data
from a previous login, it can just use that. This is known as an “offline” login, and allows users to access their
accounts even if the Edge servers are unavailable. Otherwise, the client needs to obtain a copy of the login data
from the auth server.

Server Authentication
To perform an online password-based login, the client hashes the username and password as follows:

userId = scrypt(username, userIdSnrp)

passwordAuth = scrypt(username + password, userIdSnrp)

The parameters for these hashes, known collectively as `userIdSnrp`, are:

● n=16384

● r=1

● p=1

● salt='b5865ffb9fa7b3bfe4b2384d47ce831ee22a4a9d5c34c7ef7d21467cc758f8

1b'

The client sends these hashes to the auth server. If the userId matches a known account, the auth server hashes
passwordAuth a second time using a variable salt. If the double-hashed passwordAuth matches the
double-hashed passwordAuth stored in the database, the user has authenticated, and the server sends back the
login data.

Decryption
The login data includes the following password-related fields:

● passwordBox

● passwordKeySnrp

To log in, the client must decrypt passwordBox, which holds loginKey. The key to this box is called
passwordKey, and is derived from the password and the passwordKeySnrp parameters:

passwordKey = scrypt(username + password, passwordKeySnrp)

loginKey = decrypt(passwordBox, passwordKey)

Although passwordAuth and passwordKey are both derived from the same password, the two values use
completely different salts and difficulty parameters. Since the auth server never sees the plaintext username or
password, it has no way to derive passwordKey and obtain loginKey. This is what makes the login
“zero-knowledge”. The server may hold all the data, but cannot read any of it.

As time goes on, phones become increasingly powerful. To take advantage of this, the Edge core selects
difficulty parameters for passwordKeySnrp based on the phone’s performance. The more powerful the phone,
the stronger the password hashing, and the greater the brute-force resistance.

PIN Login
PIN login is only available on devices that have previously logged in before. These devices save a 256-bit piece
of data, called pin2Key, locally on the disk.

To perform a PIN login, the client first hashes the username and PIN using the pin2Key:

pin2Id = HMAC-SHA256(data=username, key=pin2Key)

pin2Auth = HMAC-SHA256(data=pin, key=pin2Key)

The client sends these two hashes to the auth server. Assuming these hashes match the values stored in the
database, the auth server sends back the login data for that user.

The login data includes the following PIN-related fields:

● pin2Box

● pin2KeyBox

To log in, the client simply decrypts pin2Box with pin2Key, retrieving loginKey.

The pin2KeyBox is used to synchronize the pin2Key between devices. Each time a device logs in, regardless of
the method, it decrypts pin2KeyBox to obtain pin2Key, and stores that key locally in plaintext.

Any time the pin2Key and pin2Box are brought together, the loginKey is readable. Thus, the security of this
scheme rests on keeping pin2Key on the client and pin2Box on the server. The client does not store a copy of
pin2Box on disk, since that defeats the purpose. This separation is necessary because 4-digit PIN’s are easy to
guess. By requiring the auth server on each PIN login, Edge can enforce rate-limiting in a way that would be
impossible with purely client-side cryptography.

Recovery Login
To perform a recovery login, the user must first possess a 256-bit key called recovery2Key. The Edge
application emails this key to the user when they first enable recovery questions, and each logged-in device also
saves the key to disk in plaintext. Thus, either a copy of the recovery email or a previously logged-in device are
sufficient to begin the process.

To retrieve the recovery questions, the client first hashes the username with the recovery2Key:

recovery2Id = HMAC-SHA256(data=username, key=recovery2Key)

The client sends this hash to the auth server, and auth server replies with the encrypted recovery questions (and
nothing else). To decrypt the recovery questions, the client uses recovery2Key.

Once the user answers the questions, the client hashes each of the answers using recovery2Key:

recovery2Auth = [HMAC-SHA256(data=answer1, key=recovery2Key), …]

It sends these answer hashes to the auth server along with the recovery2Id from earlier. Assuming everything
matches, the auth server sends back the login data.

The login data includes the following recovery-related fields:

● recovery2Box

● recovery2KeyBox

To log in, the client simply decrypts recovery2Box with recovery2Key, retrieving loginKey.

The recovery2KeyBox is used to synchronize the recovery2Key between devices, in the same way as for PIN
login.

The same security considerations that apply to PIN login apply to recovery login. The client does not store
recovery2Box on disk, ensuring that the server is always required. This allows the server to rate-limit the login
attempts, which is important if the answers are in any way guessable.

Note that recovery2Id is not the same as userId. Thus, knowing the username alone is not enough to retrieve the
questions. An attacker must actually know the recovery key before they can see the questions.

Two-Factor Security
To provide additional security against brute-force attempts, users can enable 2-factor security on their logins.
When this is enabled, the auth server requires a six-digit TOTP token in addition to any other authentication.
Without this token, the server will not reveal the login data.

To compute the TOTP token, both the client and server follow the algorithm specified in RFC 6238. Both the
client and the server store the same 40-bit shared secret, called the “otpKey”, in plain text.

As long as the client has a copy of the otpKey, it can access the auth server without user intervention. The first
login on a new device is different, however, since the otpKey would not be present. In these cases, the user must
scan the otpKey from an existing device to complete the login. An attacker attempting to brute-force the login
would not have access to an existing device, and would therefore be thwarted.

To prevent users from being permanently locked out of their accounts, Edge also includes the option to request a
“2-factor reset” when the user lacks an otpKey. When this happens, the auth server begins a one-week
countdown until the reset takes place.

The Edge mobile application periodically checks for pending 2-factor resets in the background. If an attacker
requests a reset, the legitimate user will see a notification on their device, regardless of whether or not they are
currently logged into Edge. The legitimate user can then cancel the reset and take any other defensive measures
they see necessary, such as changing passwords.

Edge Login
The Edge platform provides users with a Single-Sign-On experience allowing them to use a single Edge account
(username/password) to secure the private keys and data of multiple applications that utilize the Edge SDK. This
alleviates the pain point of managing multiple private keys for each blockchain application. Users are able to
“login” to each partner application by simply scanning a barcode on the partner app using their Edge mobile
app.

Every Edge partner application has an “appId”. When a user logs into a partner application, the Edge mobile app
client code creates a new bundle of login data associated with that particular appId. Each bundle has its own
loginKey, which is encrypted with the master Edge loginKey. Thus, gaining access to the root Edge loginKey
provides access to all application-specific loginKeys. On the other hand, gaining access to a single child
loginKey does not provide access to any other child loginKey or to the root Edge loginKey. This minimizes the
damage a single compromised application can do.

Each child login also has its own pin2Key. This makes it possible to perform PIN login into a partner
application without requiring access to the root Edge login. Only the root login has a password or recovery
answers, though, since those provide access to the entire tree in any case.

To request an edge login, the partner app places its appId into a communications “lobby” on the Edge auth
server. The partner app then displays a barcode with the lobby’s address. Assuming the user scans the barcode
and approves the request, the Edge app simply returns the application-specific loginKey and login data and
through the lobby. At that point, the partner application is logged in.

The lobby is protected with ECDH cryptography, so nobody but the communicating parties can read the login
reply, including the auth server itself.

Lobby Cryptography
To create a lobby, the requesting application begins by generating a random secp256k1 keypair, which will be
used to encrypt any lobby replies. The lobby’s id is derived from the keypair:

lobbyId = SHA256(SHA256(publicKey.x))

The lobbyId can be truncated to any length, but current implementations take the first 80 bits. This is long
enough to be unique, and is strong enough to make tampering with the public key impractical. The requesting
application sends the lobbyId, public key, and request contents to the auth server. It then displays the lobbyId as
a barcode.

The replying application scans the barcode and fetches the lobby contents from the auth server. It immediately
verifies that the public key contained in the lobby still matches the lobbyId, preventing any man-in-the-middle
attacks (the QR code is the root of trust in this security model). Assuming the user approves the request, the
replying application creates its own secp256k1 keypair and performs a standard ECDH multiplication to derive a
shared point. It turns the shared point into an encryption key using the following KDF:

lobbyKey = HMAC-SHA256(0x00000001 | secretX, “dataKey”)

The replying application encrypts its reply using this key, and uploads it to the lobby along with the matching
public key.

The requesting application then retrieves the reply, performs the matching ECDH derivation, and decrypts the
contents. Since only the requesting application knows the original secret key, only the requesting application can
decrypt the reply. Once the requesting application is able to decrypt the reply, it has access to its store of private
keys for that particular user. It can then use those keys for transacting on the appropriate blockchain of that
application.

Edge Login is a fundamental paradigm shift in the way single-signon has been implemented for the past two
decades. Centralized solutions from companies like Google, Twitter, and Facebook do not provide client-side
security and fall short of the security needed for blockchain private keys. Edge Login provides the familiarity,
ease, and functionality of single-signon, while still giving users full control of their data and in the case of
blockchain keys, control of their digital assets.

Edge Beyond the Blockchain
While the Edge SDK is focused on solutions to the blockchain ecosystem, it has tremendous applicability to
conventional apps that need to provide users with secure, private data.

Any application that secures user data can leverage the Edge SDK to drastically decrease their security risk at a
fraction of the price of enterprise style security infrastructure. Instead of building a bigger castle with thicker
walls to secure a trove of valuable data, app developers can enable a high powered vault in the pockets of each
of their end-users. We project great usage in the fields of:

● Internet of Things access control (smart locks, home security cameras, smart thermostats)
● Financial applications (Quicken, Quickbooks, TurboTax)
● Healthcare (Practice management applications, healthcare records.)
● Personal info (Contacts, calendars, credit card & bank info, passports, SSNs, etc)
● Authentication credentials (usernames, passwords, 2FA tokens)
● Identity (Public/private key authentication)
● Secure messaging (PGP email, encrypted messaging)

William Swanson <william@edge.app>

Paul Puey <paul@edge.app>

